The role of weak hydrogen bonds in chiral recognition.

نویسندگان

  • Debora Scuderi
  • Katia Le Barbu-Debus
  • A Zehnacker
چکیده

Chiral recognition has been studied in neutral or ionic weakly bound complexes isolated in the gas phase by combining laser spectroscopy and quantum chemical calculations. Neutral complexes of the two enantiomers of lactic ester derivatives with chiral chromophores have been formed in a supersonic expansion. Their structure has been elucidated by means of IR-UV double resonance spectroscopy in the 3 μm region. In both systems described here, the main interaction ensuring the cohesion of the complex is a strong hydrogen bond between the chromophore and methyl-lactate. However, an additional hydrogen bond of much weaker strength plays a discriminative role between the two enantiomers. For example, the 1:1 heterochiral complex between R-(+)-2-naphthyl-ethanol and S-(+) methyl-lactate is observed, in contrast with the 1:1 homochiral complex which lacks this additional hydrogen bond. On the other hand, the same kind of insertion structures is formed for the complex between S-(±)-cis-1-amino-indan-2-ol and the two enantiomers of methyl-lactate, but an additional addition complex is formed for R-methyl-lactate only. This selectivity rests on the formation of a weak CHπ interaction which is not possible for the other enantiomer. The protonated dimers of Cinchona alkaloids, namely quinine, quinidine, cinchonine and cinchonidine, have been isolated in an ion trap and studied by IRMPD spectroscopy in the region of the ν(OH) and ν(NH) stretch modes. The protonation site is located on the alkaloid nitrogen which acts as a strong hydrogen bond donor in all the dimers studied. While the nature of the intermolecular hydrogen bond is similar in the homochiral and heterochiral complexes, the heterochiral complex displays an additional weak CHO hydrogen bond located on its neutral part, which results in slightly different spectroscopic fingerprints in the ν(OH) stretch region. This first spectroscopic evidence of chiral recognition in protonated dimers opens the way to the study of the complexes of Cinchona alkaloids involved in enantioselective catalysis. These examples show how secondary hydrogen bonds controlled by stereochemical factors govern molecular recognition processes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chiral recognition mechanisms of four β-blockers by HPLC with Amylose Chiral Stationary Phase

The high performance liquid chromatography (HPLC) enantioseparation of four β-blocking agents metoprolol, bisoprolol, propranolol and atenolol was performed on amylose tris-(3,5-dimethylphenylcarbamate) chiral stationary phase using n-hexane-ethanol-diethylamine (DEA) as the mobile phase and related chiral recognition mechanisms were discussed. Enantiomeric separation of the fourβ-blockers was ...

متن کامل

Chiral recognition mechanisms of four β-blockers by HPLC with Amylose Chiral Stationary Phase

The high performance liquid chromatography (HPLC) enantioseparation of four β-blocking agents metoprolol, bisoprolol, propranolol and atenolol was performed on amylose tris-(3,5-dimethylphenylcarbamate) chiral stationary phase using n-hexane-ethanol-diethylamine (DEA) as the mobile phase and related chiral recognition mechanisms were discussed. Enantiomeric separation of the fourβ-blockers was ...

متن کامل

Electrochemical Chiral Recognition of Naproxen Using L-Cysteine/Reduced Graphene Oxide Modified Glassy Carbon Electrode

The electrochemical response of S- and R-naproxen enantiomers was investigated on L-cysteine/reduced graphene oxide modified glassy carbon electrode (L-Cys/RGO/GCE). The production of the reduced graphene oxide and L-cysteine on the surface of the glassy carbon electrode was done by using electrochemical processes. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were us...

متن کامل

A role for CH...O interactions in protein-DNA recognition.

The concept of CH...O hydrogen bonds has recently gained much interest, with a number of reports indicating the significance of these non-classical hydrogen bonds in stabilizing nucleic acid and protein structures. Here, we analyze the CH...O interactions in the protein-DNA interface, based on 43 crystal structures of protein-DNA complexes. Surprisingly, we find that the number of close intermo...

متن کامل

N,N′-[(1S,2S)-Cyclo­hexane-1,2-di­yl]bis­(4-methyl­benzene­sulfonamide)

In the title compound, C(20)H(26)N(2)O(4)S(2), the cyclo-hexane ring has a chair conformation. The two chiral C atoms are in S configurations. In the crystal, inter-molecular N-H⋯O hydrogen bonds link the mol-ecules into chains propagating in [001]. Weak inter-molecular C-H⋯O hydrogen bonds further stabilize the crystal packing.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 13 40  شماره 

صفحات  -

تاریخ انتشار 2011